

Circulation and mixing of Technetium-99 in the Arctic Ocean from 1970 to 2002

M. Karcher^{1,2}, M. Iosjpe³, I. Harms⁴, R. Gerdes¹, F. Kauker^{1,2} & J.P. Gwynn³

¹Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany,

²O.A.Sys. – Ocean Atmosphere Systems GbR, Hamburg, Germany

³Ståtens Stralevern (Norwegian Radiation Protection Authority-NRPA) Osteras, Norway

⁴Institute for Marine Research, University of Hamburg, Germany

Technetium-99 (⁹⁹Tc), a highly soluble anthropogenic radionuclide, has been released to the ocean through controlled discharges from the nuclear reprocessing facilities at Sellafield (UK) and Cap la Hague (France). Two periods of heightened discharge in the 1970's and the 1990's have taken place. Leaving the radiological consequences of the release aside, the well known history and localized nature of the ⁹⁹Tc releases offer an opportunity to use ⁹⁹Tc as a tracer for marine flows. After passing the North Sea and the Nordic Seas, ⁹⁹Tc intrudes into the Arctic Ocean where it is subject to advection in the surface layer below the ice. Additionally, the ⁹⁹Tc signal subducts via dense water formation in the Barents Sea into the Eurasian Basin, subsequently circulating in the deep Arctic basins. We investigate advection and mixing of the ⁹⁹Tc in the circulation systems of Arctic Ocean at different depths. For this purpose the hydrodynamic coupled ice-ocean model NAOSIM, forced with realistic atmospheric data is used, simulating the dispersion of the radionuclide from 1970 to 2002.

The influence of the inter-annual variability of the Ocean circulation on the tracer dispersion and implications for box assessment modelling of radionuclides in the Arctic is discussed.

AWI - NAOSIM model setup	Northward propagation of two Tc-99 peaks	Spreading of Tc-99 in the Arctic Ocean I (NAOSIM)surface300 m depth
• MOM 2 based ocean module	The displacement of the two release peaks from ^{0.8} Barents Sea	1984
 0.25° resolution on rotated spherical grid 	1978 and 1995 can be 66	
 33 depth levels 	followed in upper ocean of concentrations via the	
• Open boundary at 50°N	North Sea into the West ^{0.2}	
FCT advection scheme	Spitsbergen Current and 70758085909500	
• VP sea ice model, Semtner thermodynamics, snow layer	The 1995-peak when 0.40 West Spits bergen	
• 99 Tc sources from Sellafield and La Hague	reaching the Barents Sea Current	
	travels slower than the	
 Initial condition: PHC climatology (Steele et al., 2001) 	is partly due to	996 2002 2002 2002
 SSS restoring (timescale 180 d) 	anomalously low flow	
• NCEP forcing 1948-2004	through the Siberian 7075 80 85 90 95 00 Shelves in the late 1000s	
	(Harms and Karcher. ¹⁰ northern	

NRPA box model setup

ARCTIMAR 2

- Improved box scheme and prescribed fluxes
- Non-instantaneous mixing
- advection, sedimentation, diffusion through pore water, resuspension and a burial process of radionuclides in deep sediment

Improved water-sediment module

Nansen Basin Surface	Nansen Basin bo

The displacement of the 1978-peak (red circles) can be followed to enter the central Arctic. Due to the strong AO regime in the early/mid 1990s the signal reaches far into the Makarov and Canadian Basins. In the late 1990s the AO index, January-March 1900-2002 1978-peak has left the Arctic surface waters, while the 1995-peak (blue circles) has reached the Siberian shelves.

At 300 m depth inside the Atlantic Water layer the 1978-peak is passing the Beaufort Sea in the early 2000s after crossing the Lomonosov Ridge in the early 1990s with the strong AO cyclonic regime. It outlines the current structure as derived from observations by Rudels et al. (1994). The tracer indicates that the signal which recirculates along the mid-Arctic Lomonosov Ridge is rather diffusive while the part following the continental slope into the Makarov and Canadian Basins keeps a more pronounced shape.

The displacement of the earlier 1978-peak in the Arctic can be timed as 7 years to St.Anna Trough and 11 years to the Laptev Sea slope at all depths, surface, halocline and Atlantic layer. After 22 years the peak reaches the Beaufort Sea in the Atlantic Layer boundary current, while at the surface the signal is approaching even slower from the west with the Beaufort Gyre. Along the Atlantic layer shortcut loop along the Lomonosov Ridge in the Eurasian Basin the 1978-peak reaches Fram Strait after 20(18-23) years. These results compare well with tracer and hydrography derived ages of

RESULTS:

•Tc-99 is suggested as an excellent tracer for Atlantic derived water masses in the Arctic Ocean. The comparison of the early 1978-peak and the recent mid 1990s peak occurred during different atmospheric and oceanic states of circulation. The inflence of these different states ob dispersion and mixing of watermasses can be studied, and complement studies based on hydrography and other tracers.

- •We find a clear imprint of the changes of atmospheric conditions during the early 1990s high Arctic Oscillation period in the patterns of tracer dispersion in our model simulation, namely fast and widespread penetration of Atlantic Water into the Canadian and Makarov Basins.
- •The spreading of the two Tc-99 signal can be used for model validation not only in circulation models, but also in box assessment models used for assessment of radiological consequences of radionuclide releases to biota and man.

•As part of RADNOR, box model simulatuions based on circulation fields from different climatic periods are in preparation

Norges forskningsråd

• Dowdall, M., Gerland, S., Karcher, M., Gwynn, J. P., Rudjord, A. L., Kolstad, A. K.(2005). Optimization of sampling for the temporal monitoring of Technetium-99 in the Arctic marine environment, Journal of environmental radioactivity, Vol 84/1 pp. 111-130. DOI: doi:10.1016/j.jenvrad.2005.04.010

• Karcher, M. J., Gerland, S., Harms, I., Iosjpe, M., Heldal, H., Kershaw, P. J., Sickel, M.(2004). The dispersion of technetium-99 in the Nordic Seas and the Arctic Ocean: a comparison of model results and observations, Journal of environmental radioactivity, Vol.74, 1-3, 2004, pp. 185-198.

• Karcher, M., R. Gerdes, F. Kauker and J. P. Gwynn, Tracing Atlantic derived water in the Arctic Ocean and the Nordic Seas with ⁹⁹Tc, in prep.

